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Phase separation in incompressible systems
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We consider phase separation in multicomponent systems in the limit as the free volume goes to zero.
Excluded volume effects are taken into account via a pressure field which implicitly relates currents and forces.
The pressure, obtainable from a divergence condition, may give rise to circulating currents. A simple descrip-
tion of the dynamics of phase separation at late times follows.@S1063-651X~97!50504-6#

PACS number~s!: 61.25.2f
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The dynamics of phase separation in complex fluids, s
as polymer blends and liquid crystal mixtures, is of cons
erable current interest@1–4#. A problem of particular impor-
tance is the determination of the Onsager kinetic coefficie
which relate material currents to the thermodynamic for
driving the phase separation. Generalized thermodynam
@5# gives a prescription for enumerating the allowed forc
however, the procedure for evaluating the nonvanish
transport coefficients is less clear. In the Cahn-Hillia
theory @6# of binary fluids, the mixture is assumed to b
incompressible, and the volume fraction of the second co
ponent can be eliminated from the free energy and from
dynamical description. In this approach, the transport coe
cient chosen for one component implicitly determines tha
the other. In a seminal work, de Gennes@7# considered the
thermodynamic forces responsible for incompressibility, a
obtained an expression for the transport coefficients in a
nary polymer blend. This approach was extended by Bin
@8#, who allowed for nonlocality of the interactions by ma
ing the transport coefficients dependent on the wave ve
q. Current work, such as that of Liu and Fredrickson@10#,
generalizes the above method; transport coefficients are
tained by making use of linear or nonlinear response the
and invoking incompressibility.

In this Rapid Communication, we propose a different a
proach, similar to the one used in deriving the hydrodynam
equations for incompressible fluids@11#. We first consider
the dynamics of a compressible multicomponent sys
where the mobilities of the constituents depend on the
volume; we then take the incompressible limit. In th
scheme, there naturally emerges a pressure field, obtain
from a divergence-free condition, whose gradient enfor
incompressibility. Rather than making use of a wave-vec
expansion, this model is fully nonlocal; it furthermore giv
the relevant long-time behavior. We discuss the connec
with earlier approaches.

We start with the following approximate expression f
the free-energy density of a compressiblem component sys-
tem:

F5F02kT(
i51

m
f i

v i
lnS 12(

j51

m

f j D , ~1!
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wherev i is the particle volume andf i is the volume fraction
of the i th component.F0 is the free-energy density of th
incompressible fluid, andF2F0 is the entropic contribution
arising from compressibility. If F0 has the form
F052( i j ai jf if j1kT( i(f i /v i)lnfi , then Eq.~1! leads to
the van der Waals equation of state. One may w
v i5Niv0, wherev0 is a characteristic volume; for polymers
then,Ni is the degree of polymerization. The last term on t
right-hand side of Eq.~1! is due to compressibility. Othe
than having the entropy of mixing~per volumev0) equal to
2k( i(f i /Ni)lnfi , F0 is general, and may have Flory
Huggins@12# or Cahn-Hilliard@6# form.

From Eq.~1!, the chemical potentialm i of a particle of
speciesi is

m i5m i02kT lnh(
j

f j

v j
1
kTv i

h
~2!

whereh5(12( jf j )/( j (f j /v j ) is the free volume per par
ticle. As in Ref. @7#, we postulate that the current of an
component is proportional to the gradient of the chemi
potential of that component. Since we expect the mobility
be proportional to the mean free path, for the volume curr
of componenti we write

Ji52L i~h/v0!
1/d¹m i /v ikT, ~3!

where d is the dimensionality of the system,L i5Dif iv i
andDi is a ‘‘bare’’ diffusion constant. The dynamics is the
obtained from the equation of continuity (]f i /]t)1¹•Ji
50.

Next we take the incompressible limit. We note th
the pressure is given by P52F1( if i(]F/]f i)
5Po1kT( if i /h where Po is the contribution to the
pressure fromFo . Away from equilibrium, P, Po , and
h may vary in space and time. It is convenient
write kT( if i /h5P`1 p(r,t), where P` is a large
uniform constant background pressure, andp5P2Po
2P` is the local variation. We writeP` in terms
of a small dimensionless parameter«5kT/P`vo ; then h
5«v0( if i3@11«(pv0 /kT)#

21. In the limit when «→0,
( if i→1, and the chemical potential becomes

m i5m i02kT ln(
j

f j

v j
1pv i ~4!
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55 R3845PHASE SEPARATION IN INCOMPRESSIBLE SYSTEMS
to within an additive constant. The excluded volume inter
tions, which are not included inF0 but which are responsible
for the finite density of the system, give rise to the last t
terms on the right-hand side of Eq.~4!. For small «, the
equation of continuity becomes

]f i

]t
.«1/d¹•~L i¹m i /v ikT! ~5!

Introducing the scaled timet l5«1/dt to obtain the late time
behavior, we get

]f i

]t l
5¹•L i¹m i /v ikT, ~6!

wherem i is given by Eq.~4!.
The pressure field can be obtained from the incompre

ibility condition h50, or ( if i51. This gives

¹•(
i

L i¹p52¹•(
i

L i¹S m i02kT ln(
j

f j

v j
D Y v i

~7!

which may be solved forp. Equations~4!, ~6!, and ~7! are
our main results. They describe the evolution of the sys
at late times, where the nonlocal interactions which give r
to volume conservation are taken into account via the p
sure fieldp.

Both our approach and that of de Gennes@7# rely on an
augmented chemial potential which enforces volume c
servation. Indeed, his potentialU corresponds to
2kT ln(j(fj /vj)1pvi in our scheme. He subsequently a
gues, however, that since the divergence of the total cur
must be zero, the Fourier coefficients of the total curr
must be zero forqÞ0. His results therefore only hold in on
dimension, whereas ours hold in general, and allow nonv
ishing solenoidal net flux.

In one dimension, Eq.~7! may be solved to give

¹p52
( iL i¹@m i02kT ln( j~f j /v j !#v i

( iL i
. ~8!

Equation~4! then gives

Ji5(
j

G i j¹S m j0 /kT2 ln(
l

f l

v l
D Y v j ~9!

whereG i j5(L iL j /( lL l)2d i jL i . We note that all the ther
modynamic forces2¹mo j contribute to the currentJi of
each component, due to the interactions responsible for
.
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compressibility. The kinetic coefficientsG i j satisfy the On-
sager reciprocity relationsG i j5G j i . For a two-component
system,GAB5GBA52GBB52GAA5LALB /(LA1LB), in
agreement with expressions currently in use@7,9,10#.

The dynamics is given by

]fA

]t
5

]

]x
GAB

]

]x FdF0~fA,12fA!/kT

dfA

2S 1vA 2
1

vB
D lnS fA

vA
1
12fA

vB
D G , ~10!

and similarly forfB . For the growth ratevA of a mode with
wave numberq, linear stability analysis gives

vA5GAB~aq
22bq41cq2!, ~11!

wherea52]2F0 /]fA
2 andb5]2Fo /](]fA /]x)

2 as usual;
c5 @(vA /vB)1(vB /vA)22/(vBfA1vA(12fA)# is a desta-
bilizing entropic contribution originating in the volume dif
ference of particles. Although in the absence of energ
terms inF0 this effect is not large enough to overcome t
entropy of mixing, it is consistent with predictions of pha
separation due to size difference via steric interactions@14#.

In summary, here we propose that phase separation
namics of incompressible multicomponent systems may
simply described by a model where the current of ea
component is proportional to the chemical potential of th
component; Ji52L i¹m i . The kinetic coefficient is
L i5Dif iv i , and the chemical potential i
m i5m i02kT ln((fj /vj)1pvi , wherem i0 is the chemical po-
tential obtained from the usual~Flory-Huggins or Cahn-
Hilliard type! free energy. The contribution to the curre
Ji from the chemical potential gradients of other compone
is implicitly included in the pressure fieldp, which may be
obtained from the divergence condition of Eq.~7!. Due to
time scaling, the dynamic equations@Eq. ~6!# give the rel-
evant behavior at late times. It is straightforward to sh
that, following this dynamics, the free energy is nonincre
ing in time. This model is also equivalent to the descripti
of multi-component fluids under Darcy’s approximatio
@13#. In 12d, our results are consistent with those in t
literature. Extension of this approach to systems with ori
tational order is underway.
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