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Phase separation in incompressible systems
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We consider phase separation in multicomponent systems in the limit as the free volume goes to zero.
Excluded volume effects are taken into account via a pressure field which implicitly relates currents and forces.
The pressure, obtainable from a divergence condition, may give rise to circulating currents. A simple descrip-
tion of the dynamics of phase separation at late times follp$063-651X97)50504-4

PACS numbdps): 61.25—f

The dynamics of phase separation in complex fluids, suckvherev; is the particle volume ang; is the volume fraction
as polymer blends and liquid crystal mixtures, is of consid-of the ith componentF, is the free-energy density of the
erable current intere$l—4]. A problem of particular impor- incompressible fluid, an& —F is the entropic contribution
tance is the determ_ination of the Onsager kinetic co_efficientgrising from compressibility. If F, has the form
which relate material currents to the thermodynamic forceg — — ;@ bid+ KT (i fvi)Ingsy, then Eq.(1) leads to
driving the phase separation. Generalized thermodynamiGge van der Waals equation of state. One may write

[5] gives a prescription for enumerating the allowed forces; _ N,vo, Whereu, is a characteristic volume; for polymers,

. s i
however, the procedure for evaluating the nonvanishing,., \ s the degree of polymerization. The last term on the
transport coefficients is less clear. In the Cahn'H'"'ardright-hand side of Eq(1) is due to compressibility. Other

theory [6] of binary fluids, the mixture is assumed to be than having the entropy of mixingper volumen,) equal to
incompressible, and the volume fraction of the second com- 9 Py Vo) €9
~kZi(#iIN))Ing,, Fy is general, and may have Flory-

onent can be eliminated from the free energy and from th . .

Synamical description. In this approach, the tgr)z;nsport coeffifiuggins[12] or Cahn-Hilliard[6] form. _

cient chosen for one component implicitly determines that of From Eqg.(1), the chemical potentigk; of a particle of

the other. In a seminal work, de Genri@$ considered the SP€CI€S IS

thermodynamic forces responsible for incompressibility, and

obtained an expression for the transport coefficients in a bi- o — KT |n772 ﬁJr @ )

nary polymer blend. This approach was extended by Binder K= Hio T Uj 7

[8], who allowed for nonlocality of the interactions by mak-

ing the transport coefficients dependent on the wave vectorheren=(1—-2;¢;)/2;(¢;/v;) is the free volume per par-

g. Current work, such as that of Liu and Fredrickdd®], ticle. As in Ref.[7], we postulate that the current of any

generalizes the above method; transport coefficients are olgomponent is proportional to the gradient of the chemical

tained by making use of linear or nonlinear response theorgotential of that component. Since we expect the mobility to

and invoking incompressibility. be proportional to the mean free path, for the volume current
In this Rapid Communication, we propose a different ap-of componeni we write

proach, similar to the one used in deriving the hydrodynamic

equations for incompressible fluidé1]. We first consider Ji=—Ai(9lve) YV u,; lvikT, ©)

the dynamics of a compressible multicomponent system ) ) ) _

where the mobilities of the constituents depend on the fre#hered is the dimensionality of the system\;=D;;v;

volume; we then take the incompressible limit. In thisandD; is a “bare” diffusion constant. The dynamics is then

scheme, there naturally emerges a pressure field, obtainas¥tained from the equation of continuityd;/dt) +V-J;

from a divergence-free condition, whose gradient enforces 0.

incompressibility. Rather than making use of a wave-vector Next we take the incompressible limit. We note that

expansion, this model is fully nonlocal; it furthermore givesthe pressure is given by P=—F+X;¢(dF/d¢)

the relevant long-time behavior. We discuss the connectiorr Po+kT2i¢;/n where P, is the contribution to the

with earlier approaches. pressure fromF,. Away from equilibrium, P, P,, and
We start with the following approximate expression for 7 may vary in space and time. It is convenient to

the free-energy density of a compressililecomponent sys- Wwrite kT2;¢;/7=P..+ p(r,t), where P, is a large

tem: uniform constant background pressure, ape=P—P,
m m —P, is the local variation. We writeP, in terms

bi of a small dimensionless parameter=kT/P.v,; then

F=Fo—kT2, ~In 1_;1 i @ gpeS b X[1+2(pu/kT)] L. In the limit whene—0,

>i¢—1, and the chemical potential becomes
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to within an additive constant. The excluded volume interaccompressibility. The kinetic coefficients;; satisfy the On-
tions, which are not included iRy but which are responsible sager reciprocity relation¥;;=I";;. For a two-component

for the finite density of the system, give rise to the last twosystem,I's\g=1'ga=—T'gg=—T'an=ApAg/(Ap+Ag), in
terms on the right-hand side of E@®). For smalle, the  agreement with expressions currently in (ig9,10.

equation of continuity becomes The dynamics is given by
oy Ipa 0 3 [OFo(Pal— pa)lKT
Frats V- (AiVuilvikT) 5 Tt ax ! ABgx Sbn
Introducing the scaled timg= ¢t to obtain the late time 1 1 da 1= da
; —|——=—]In| —+ , (10
behavior, we get A Up UA UB
I and similarly for¢g . For the growth rate, of a mode with
&_U_V'Aiv’“i foikT, ©®  wave numben, linear stability analysis gives
where u; is given by Eq.(4). wa=Tag(ag?—bqg*+cq?), (11)
The pressure field can be obtained from the incompress- ) ) 5 )
ibility condition =0, or =;¢;=1. This gives wherea=—d"Fo/d¢j andb=d"F,/d(d¢paldx)" as usual;
C= [(UA/UB) + (UB/UA) _2/(UB¢A+ UA(l_ ¢A)] is a desta-
oy bilizing entropic contribution originating in the volume dif-
V'Ei Ain:_V'Z AiV| pio— kT '”; U_J Ui ference of particles. Although in the absence of energetic

(7) terms inF this effect is not large enough to overcome the
entropy of mixing, it is consistent with predictions of phase

which may be solved fop. Equations(4), (6), and(7) are  separation due to size difference via steric interact[d4$.

our main results. They describe the evolution of the system In summary, here we propose that phase separation dy-

at late times, where the nonlocal interactions which give rissaamics of incompressible multicomponent systems may be

to volume conservation are taken into account via the pressimply described by a model where the current of each

sure fieldp. component is proportional to the chemical potential of that
Both our approach and that of de Genfiégkrely on an  component; J;=—A;Vu;. The kinetic coefficient is
augmented chemial potential which enforces volume conA;=D;¢v;, and the chemical potential is

servation. Indeed, his potentiall corresponds to ;= puijo—KT InZ(¢;/vj)+pv;, whereu;q is the chemical po-
—KT InZj(¢;/v;)+puv; in our scheme. He subsequently ar-tential obtained from the usudFlory-Huggins or Cahn-
gues, however, that since the divergence of the total curreilliard type) free energy. The contribution to the current
must be zero, the Fourier coefficients of the total current); from the chemical potential gradients of other components
must be zero fog+# 0. His results therefore only hold in one is implicitly included in the pressure field, which may be
dimension, whereas ours hold in general, and allow nonvamsbtained from the divergence condition of Ed). Due to
ishing solenoidal net flux. time scaling, the dynamic equatioh&g. (6)] give the rel-
In one dimension, Eq7) may be solved to give evant behavior at late times. It is straightforward to show
that, following this dynamics, the free energy is nonincreas-

~ ZiA V[ pio—KT InZj(;/vj) Jv; ing in time. This model is also equivalent to the description

Vp= SiA; ® of multi-component fluids under Darcy's approximation
. . [13]. In 1—d, our results are consistent with those in the
Equation(4) then gives literature. Extension of this approach to systems with orien-
tational order is underway.
Ji=> TiiV| wijo/kT—In2, & v, 9) , , ,
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